Dimensionless group: Difference between revisions

From Glossary of Meteorology
imported>Perlwikibot
(Created page with " {{TermHeader}} {{TermSearch}} <div class="termentry"> <div class="term"> == dimensionless group == </div> <div class="definition"><div class="short_definition">(Also n...")
 
imported>Perlwikibot
No edit summary
Line 9: Line 9:
   </div>
   </div>


<div class="definition"><div class="short_definition">(Also nondimensional number, dimensionless number.) A dimensionless combination  of several physical variables (e.g., [[velocity]], [[density]], [[viscosity]]), usually with a physical  interpretation.</div><br/> <div class="paragraph">Dimensionless groups arise naturally in the [[scale analysis]] of equations. The sixth edition of  the McGraw&ndash;Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups.  <br/>''See'' [[Boussinesq number]], [[Cauchy number]], [[Grashoff number]], [[Mach number]], [[Nusselt number]],  [[P&eacute;clet number]], [[Prandtl number]], [[Rayleigh number]], [[Richardson number]], [[Rossby number]],  [[Strouhal number]], [[Taylor number]]; <br/>''see also'' [[dimensional analysis]], [[similarity theory]], [[Buckingham  Pi theory]].</div><br/> </div>
<div class="definition"><div class="short_definition">(Also nondimensional number, dimensionless number.) A dimensionless combination  of several physical variables (e.g., [[velocity]], [[density]], [[viscosity]]), usually with a physical  interpretation.</div><br/> <div class="paragraph">Dimensionless groups arise naturally in the [[scale analysis]] of equations. The sixth edition of  the McGraw&ndash;Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups.  <br/>''See'' [[Boussinesq number]], [[Cauchy number]], [[Grashoff number]], [[Mach number]], [[Nusselt number]],  [[P&#x000e9;clet number]], [[Prandtl number]], [[Rayleigh number]], [[Richardson number]], [[Rossby number]],  [[Strouhal number]], [[Taylor number]]; <br/>''see also'' [[dimensional analysis]], [[similarity theory]], [[Buckingham  Pi theory]].</div><br/> </div>
</div>
</div>



Revision as of 14:03, 20 February 2012



dimensionless group

(Also nondimensional number, dimensionless number.) A dimensionless combination of several physical variables (e.g., velocity, density, viscosity), usually with a physical interpretation.

Dimensionless groups arise naturally in the scale analysis of equations. The sixth edition of the McGraw–Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups.
See Boussinesq number, Cauchy number, Grashoff number, Mach number, Nusselt number, Péclet number, Prandtl number, Rayleigh number, Richardson number, Rossby number, Strouhal number, Taylor number;
see also dimensional analysis, similarity theory, Buckingham Pi theory.


Copyright 2024 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.