Triple scalar product: Difference between revisions

From Glossary of Meteorology
imported>Perlwikibot
(Created page with " {{TermHeader}} {{TermSearch}} <div class="termentry"> <div class="term"> == triple scalar product == </div> <div class="definition"><div class="short_definition">The [...")
 
imported>Perlwikibot
No edit summary
 
Line 9: Line 9:
   </div>
   </div>


<div class="definition"><div class="short_definition">The [[scalar]] '''A''' &middot; ('''B''' &times; '''C''') written ('''ABC''') or ['''ABC'''], where '''A''', '''B''', and '''C''' are any  three vectors.</div><br/> <div class="paragraph">The dot denotes a [[scalar product]] and the cross a [[vector product]]. When '''A''', '''B''', and '''C''' are  written in terms of their components along the ''x'', ''y'', and ''z'' axes of the [[rectangular Cartesian  coordinates]], that is, '''A''' = ''a''<sub>1</sub>'''i''' + ''a''<sub>2</sub>'''j''' + ''a''<sub>3</sub>'''k''', '''B''' = ''b''<sub>1</sub>'''i''' + ''b''<sub>2</sub>'''j''' + ''b''<sub>3</sub>'''k''', and '''C''' = ''c''<sub>1</sub>'''i''' + ''c''<sub>2</sub>'''j''' + ''c''<sub>3</sub>'''k''', the  triple scalar product is the determinant  <div class="display-formula"><blockquote>[[File:ams2001glos-Te43.gif|link=|center|ams2001glos-Te43]]</blockquote></div> Any cyclic change among the vectors in a triple product does not alter its value.</div><br/> </div>
<div class="definition"><div class="short_definition">The [[scalar]] '''A''' &middot; ('''B''' &times; '''C''') written ('''ABC''') or ['''ABC'''], where '''A''', '''B''', and '''C''' are any  three vectors.</div><br/> <div class="paragraph">The dot denotes a [[scalar product]] and the cross a [[vector product]]. When '''A''', '''B''', and '''C''' are  written in terms of their components along the ''x'', ''y'', and ''z'' axes of the [[rectangular Cartesian coordinates|rectangular Cartesian  coordinates]], that is, '''A''' = ''a''<sub>1</sub>'''i''' + ''a''<sub>2</sub>'''j''' + ''a''<sub>3</sub>'''k''', '''B''' = ''b''<sub>1</sub>'''i''' + ''b''<sub>2</sub>'''j''' + ''b''<sub>3</sub>'''k''', and '''C''' = ''c''<sub>1</sub>'''i''' + ''c''<sub>2</sub>'''j''' + ''c''<sub>3</sub>'''k''', the  triple scalar product is the determinant  <div class="display-formula"><blockquote>[[File:ams2001glos-Te43.gif|link=|center|ams2001glos-Te43]]</blockquote></div> Any cyclic change among the vectors in a triple product does not alter its value.</div><br/> </div>
</div>
</div>



Latest revision as of 17:08, 25 April 2012



triple scalar product

The scalar A · (B × C) written (ABC) or [ABC], where A, B, and C are any three vectors.

The dot denotes a scalar product and the cross a vector product. When A, B, and C are written in terms of their components along the x, y, and z axes of the rectangular Cartesian coordinates, that is, A = a1i + a2j + a3k, B = b1i + b2j + b3k, and C = c1i + c2j + c3k, the triple scalar product is the determinant
ams2001glos-Te43
Any cyclic change among the vectors in a triple product does not alter its value.


Copyright 2024 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.