Mixed-layer similarity: Difference between revisions

From Glossary of Meteorology
imported>Perlwikibot
(Created page with " {{TermHeader}} {{TermSearch}} <div class="termentry"> <div class="term"> == mixed-layer similarity == </div> <div class="definition"><div class="short_definition">An e...")
 
imported>Perlwikibot
No edit summary
 
Line 9: Line 9:
   </div>
   </div>


<div class="definition"><div class="short_definition">An empirical method of finding universal relationships between [[boundary  layer]] variables that are made dimensionless using the [[Deardorff velocity]] ''w''<sub>&#x0002a;</sub>, the [[mixed-layer  depth]] ''z''<sub>''i''</sub>, and the mixed-layer [[temperature scale]] <div class="inline-formula">[[File:ams2001glos-Mex01.gif|link=|ams2001glos-Mex01]]</div>, where <div class="inline-formula">[[File:ams2001glos-Mex02.gif|link=|ams2001glos-Mex02]]</div> is the surface kinematic  [[heat flux]].</div><br/> <div class="paragraph">The resulting universal relationships are valid only for convective [[mixed layers]]. An example  is  <div class="display-formula"><blockquote>[[File:ams2001glos-Me11.gif|link=|center|ams2001glos-Me11]]</blockquote></div><br/>''Compare'' [[local free-convection similarity]], [[local similarity]], [[similarity theory]], [[dimensional analysis]],  [[Buckingham Pi theory]].</div><br/> </div><div class="reference">Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. 666 pp. </div><br/>  
<div class="definition"><div class="short_definition">An empirical method of finding universal relationships between [[boundary layer|boundary  layer]] variables that are made dimensionless using the [[Deardorff velocity]] ''w''<sub>&#x0002a;</sub>, the [[mixed-layer depth|mixed-layer  depth]] ''z''<sub>''i''</sub>, and the mixed-layer [[temperature scale]] <div class="inline-formula">[[File:ams2001glos-Mex01.gif|link=|ams2001glos-Mex01]]</div>, where <div class="inline-formula">[[File:ams2001glos-Mex02.gif|link=|ams2001glos-Mex02]]</div> is the surface kinematic  [[heat flux]].</div><br/> <div class="paragraph">The resulting universal relationships are valid only for convective [[mixed layers]]. An example  is  <div class="display-formula"><blockquote>[[File:ams2001glos-Me11.gif|link=|center|ams2001glos-Me11]]</blockquote></div><br/>''Compare'' [[local free-convection similarity]], [[local similarity]], [[similarity theory]], [[dimensional analysis]],  [[Buckingham Pi theory]].</div><br/> </div><div class="reference">Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. 666 pp. </div><br/>  
</div>
</div>



Latest revision as of 16:26, 25 April 2012



mixed-layer similarity

An empirical method of finding universal relationships between boundary layer variables that are made dimensionless using the Deardorff velocity w*, the mixed-layer depth zi, and the mixed-layer temperature scale
ams2001glos-Mex01
, where
ams2001glos-Mex02
is the surface kinematic heat flux.

The resulting universal relationships are valid only for convective mixed layers. An example is
ams2001glos-Me11

Compare local free-convection similarity, local similarity, similarity theory, dimensional analysis, Buckingham Pi theory.

Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. 666 pp.


Copyright 2024 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.