Dimensionless group: Difference between revisions
From Glossary of Meteorology
imported>Perlwikibot No edit summary |
imported>Perlwikibot No edit summary |
||
Line 9: | Line 9: | ||
</div> | </div> | ||
<div class="definition"><div class="short_definition">(Also nondimensional number, dimensionless number.) A dimensionless combination of several physical variables (e.g., [[velocity]], [[density]], [[viscosity]]), usually with a physical interpretation.</div><br/> <div class="paragraph">Dimensionless groups arise naturally in the [[scale analysis]] of equations. The sixth edition of the McGraw–Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups. <br/>''See'' [[Boussinesq number]], [[Cauchy number]], [[Grashoff number]], [[Mach number]], [[Nusselt number]], [[Péclet number]], [[Prandtl number]], [[Rayleigh number]], [[Richardson number]], [[Rossby number]], [[Strouhal number]], [[Taylor number]]; <br/>''see also'' [[dimensional analysis]], [[similarity theory]], [[Buckingham Pi theory]].</div><br/> </div> | <div class="definition"><div class="short_definition">(Also nondimensional number, dimensionless number.) A dimensionless combination of several physical variables (e.g., [[velocity]], [[density]], [[viscosity]]), usually with a physical interpretation.</div><br/> <div class="paragraph">Dimensionless groups arise naturally in the [[scale analysis]] of equations. The sixth edition of the McGraw–Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups. <br/>''See'' [[Boussinesq number]], [[Cauchy number]], [[Grashoff number]], [[Mach number]], [[Nusselt number]], [[Péclet number]], [[Prandtl number]], [[Rayleigh number]], [[Richardson number]], [[Rossby number]], [[Strouhal number]], [[Taylor number]]; <br/>''see also'' [[dimensional analysis]], [[similarity theory]], [[Buckingham Pi theory|Buckingham Pi theory]].</div><br/> </div> | ||
</div> | </div> | ||
Latest revision as of 15:48, 25 April 2012
dimensionless group
(Also nondimensional number, dimensionless number.) A dimensionless combination of several physical variables (e.g., velocity, density, viscosity), usually with a physical interpretation.
Dimensionless groups arise naturally in the scale analysis of equations. The sixth edition of the McGraw–Hill Encyclopedia of Science and Technology lists 12 pages of dimensionless groups.
See Boussinesq number, Cauchy number, Grashoff number, Mach number, Nusselt number, Péclet number, Prandtl number, Rayleigh number, Richardson number, Rossby number, Strouhal number, Taylor number;
see also dimensional analysis, similarity theory, Buckingham Pi theory.
See Boussinesq number, Cauchy number, Grashoff number, Mach number, Nusselt number, Péclet number, Prandtl number, Rayleigh number, Richardson number, Rossby number, Strouhal number, Taylor number;
see also dimensional analysis, similarity theory, Buckingham Pi theory.